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Abstract
We consider the question of whether a two-dimensional hard-disc fluid has
a first-order transition from the liquid state to the solid state as in the
three-dimensional melting–crystallization transition or whether one has two
subsequent continuous transitions, from the liquid to the hexatic phase and
then to the solid phase, as proposed by Kosterlitz, Thouless, Halperin, Nelson
and Young (KTHNY). Monte Carlo (MC) simulations of the fluid that study
the growth of the bond orientational correlation length, and of the crystal are
discussed.

The emphasis is on a recent consistency test of the KTHNY renormalization
group (RG) scenario, where MC simulations are used to estimate the bare elastic
constants and dislocation fugacities in the solid, as a function of density, which
then are used as starting values for the RG flow. This approach was validated
earlier for the XY model as well.

1. Introduction

Although the system of hard discs in two dimensions is one of the simplest models of a fluid,
it nevertheless exhibits a rich and complex behaviour: the problem that needs to be considered
is that of phase transitions driven by the formation of topological defects and the possible
occurrence of a hexatic phase [1–7]. The present paper describes attempts by Monte Carlo
(MC) simulation to clarify this problem.

In section 2, the problem will be introduced in more detail, and the most pertinent
theoretical predictions will be summarized. Then simulation studies of the fluid phase
and the evidence for a possible divergence of the bond orientational susceptibility will be
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discussed [8–10] (section 3). As an intermezzo (section 4), a study of the two-dimensional
planar rotor model [11] will be mentioned: for this model it is widely believed—though
not firmly proven—that a Kosterlitz–Thouless (KT) transition [1] driven by vortex–antivortex
unbinding does occur. By adopting a new way [11] to combine renormalization group (RG)
ideas with MC ‘input’, a powerful technique for characterizing the transition is obtained. An
approach in the same spirit is then (section 5) used on the solid phase of the hard-disc system,
in order to show that the MC results are compatible with the possible existence of a hexatic
phase. Section 6, finally, summarizes a few conclusions.

2. Two-dimensional solid–liquid transitions and bond orientational order

For hard discs, the potential energy U is infinite if two discs (of diameter σ = 1) overlap,
while otherwise U = 0. So temperature essentially plays no role here, since there is no
finite energy scale, and the only nontrivial control parameter still left is the density ρ in the
system. Therefore it was a nontrivial discovery—made by molecular dynamics simulation [12]
long ago—that a transition from a fluid phase at low density to a high-density crystal (with
triangular lattice structure) does indeed occur. While the early studies [12,13] concluded that
this transition is a first-order transition (like in the three-dimensional case), the validity of this
conclusion is doubtful, since the early work relied on studies of a few hundred particles only,
and with the computer resources at that time a serious study of finite-size effects could not
have been attempted. Also, no study of bond orientational order was carried out [12,13]. More
recent theories show [3–7] that a discussion of bond orientational order is crucial, however.

Note that in general a crystal is characterized both by positional long-range order and
by bond orientational long-range order [3–7]. In d = 2 dimensions, however, rigorous
theorems [14] exclude positional long-range order (for ρ < ρcp = 2/

√
3, where ρ is the

density of the close-packed structure; note that the hard-sphere diameter is our unit of length),
while orientational long-range order can still occur.

In order to define the bond orientational order parameter, imagine a Voronoi construction
carried out between the centres of mass of a disc and its neighbours. In this way, nearest
neighbours can unambiguously be defined for each configuration, and the straight line
connecting the centres of mass of two nearest neighbours is called a bond. Taking the direction
of a bond between particle k and one of its neighbours as a reference direction for the whole
lattice, we define the angle between the bond connecting particle k and one of its nearest
neighbours j and the reference direction as φkj . For a perfect triangular structure, φkj will be
2π/6 or a multiple thereof. Therefore it makes sense to define the order parameter � as

� =
∣∣∣∣
∑
k

�k

∣∣∣∣
/
N, �k = (1/6)

∑
j (n.n. of k)

exp(6iφjk), (1)

N being the particle number in the system. For a perfect triangular structure, �k = 1 for all
k and � = 1, while in the disordered phase the �k become complex numbers and � will
average to zero for N → ∞.

But in the disordered phase it still makes sense to study the bond orientational correlation
function

g6(r) = |〈�k��〉|, r = |�rk − �r�|. (2)

According to the RG theory proposed by Halperin, Nelson and Young [3–7], melting in d = 2
dimensions can occur via two continuous transitions (at densitiesρ� andρs) with corresponding
pressures p� and ps > p�, rather than via a single first-order transition at pressure pt (where a
fluid of density ρ ′

� and a solid of density ρ ′
s will coexist); see figure 1. Both in the fluid phase
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Figure 1. Qualitative isotherms where the pressure p is plotted versus density ρ, for the case of a
first-order transition (upper part) and according to the KTHNY theory (lower part). Note that for
the hard-disc system there is no temperature dependence, so one can choose kBT ≡ 1.

and in the hexatic phase, 〈�〉 = 0, but the behaviours of g6(r) are different: in the fluid one
finds an exponential decay, while there is a power-law decay in the hexatic phase:

g6(r → ∞) ∝ exp(−r/ξ), ρ < ρ�, (3)

g6(r → ∞) ∝ r−η, ρ� � ρ < ρs, (4)

and the correlation length ξ of the bond orientational order diverges according to a KT
behaviour [1–7] as ρ� is approached, as does the bond orientational susceptibility χ ≡∫

d2�r g6(r):

ln ξ ∝ ln χ ∝ (ρ� − ρ)−1/2. (5)

Conversely, if one has a first-order transition, both ξ and χ stay finite at ρs , and a nonzero
order parameter 〈�〉 has already started to increase (linearly in the density) at ρ ′

� (according
to the lever rule), while according to the Kosterlitz, Thouless, Halperin, Nelson and Young
(KTHNY) scenario, 〈�〉 is nonzero for ρ > ρs only.

The mechanism of these continuous phase transitions is the unbinding of topological
defects. Just as in the two-dimensional XY ferromagnet or planar rotor model, where vortex–
antivortex unbinding occurs [1, 5], the transition from the solid to the hexatic phase is driven
by the unbinding of dislocation pairs with oppositely oriented Burgers vectors. While a free
dislocation would have an infinitely long extra half-row of atoms, such a dislocation pair at
finite distance involves a finite number of atoms in the extra row only, and such an excitation
hence costs only a finite energy and can occur in the crystal in thermal equilibrium. The hexatic
phase then melts into the liquid via disclination pair unbinding.
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Figure 2. The equation of state of the hard-disc fluid in the transition region. Diamonds and crosses
represent data from Jaster [10] for systems of 128 × 128 and 256 × 256 particles, respectively,
while the thin solid curve is a polynomial fit to these data for ρ � 0.9 (data for ρ > 0.9 may be
invalid due to finite-size effects and insufficient equilibration). The horizontal dotted line p = 9.2
indicates the resulting estimate for Pt (or p�). The other dotted curve is a semiempirical form
for the equation of state [16] that provides a good fit of the MC data [17] for 0 < ρ < 0.8. The
thick solid curve is the pressure of the solid phase, obtained via thermodynamic integration [15],
the lower arrow showing the position of the solid-to-hexatic transition if the bare (unrenormalized)
Young’s modulus K is used in the KTHNY theory, while the upper arrow shows the location of
this transition if the renormalized value KR is used (see section 5) (from Sengupta et al [15]).

3. Simulation studies of the liquid phase and evidence for bond orientational order

Figure 2 shows an attempt to distinguish between the two scenarios of figure 1 using the most
recent MC results [10–15]. It is immediately obvious that the data support neither scenario
strongly: if there were a first-order transition, the p versus ρ curve should exhibit a kink at
ρ ′
� and stay flat from there on. However, it is apparent that instead the slope dp/dρ gets

gradually smaller, and there is no kink (note that at ρ = 0.89 and ρ = 0.895 there is no
sign of any two-phase coexistence whatsoever yet; all the criteria indicate that one is still in
the fluid phase). Note also that the smooth decrease of dp/dρ near ρ = 0.89 is not due to
finite-size rounding—data for two large system sizes differing by a factor of two in their linear
dimension coincide. As will be discussed shortly, the best estimate for the divergence of χ
compatible with equation (5) is ρ� = 0.899 [9]. However, the slight decrease of p seen in the
data for 0.9 � ρ � 0.91 clearly is not compatible with the KTHNY scenario (figure 1): if this
decrease were to persist for the thermal equilibrium properties of still larger systems, it would
be a rather clear evidence that a two-phase coexistence region of a first-order transition has
been entered. However, at this point it is not clear whether this decrease is a real effect or just
an artefact of insufficient equilibration or too-small system sizes in the region ρ > ρ� (due to
the power law, equation (4), finite-size effects are expected to be far more pronounced in the
hexatic phase than in the other phases).

Figure 3 presents the MC results for the bond orientational order parameter, as obtained
from a subbox finite-size scaling analysis [8]. This subbox method was used (i) since a single
large-scale simulation (usingN = 16 384 hard discs and a statistical effort of 106 Monte Carlo
steps (MCS) per particle) yields simultaneously finite-size data for a broad range of sizes and
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(ii) since—because the boundaries of the subboxes are only virtual and have no constraining
physical effect—density fluctuations in the subboxes are not suppressed, corresponding to an
equilibrium within the subboxes at constant chemical potential µ as long as Mb � 1. It is
seen that finite-size effects on 〈�〉L are negligible for ρ � 0.91, so the densities can safely be
identified as the solid phase. On the other hand, for ρ � 0.89 it is clear that 〈�〉L → 0 for
L → ∞; so if there were a first-order transition, ρ ′

� should be somewhat larger than 0.89, and
ρ ′
s should be somewhat smaller than 0.91. Already these bounds yield a width of a possible

two-phase coexistence region smaller than previous estimates [12,18]. In addition, one expects
to see a rather sharp kink at ρ = ρ ′

s (figure 3(b)), but such a kink cannot be identified from the
data either (of course, the kink at ρ = ρ ′

� is expected to be blurred by finite-size effects, since
〈�〉L must be nonzero for any L < ∞).

Also, the distribution function PL(�, ρ) was monitored, in order to check for signals of
a double-peak structure, one peak near � = 0 coexisting with a peak near � = 0.6 − 0.7:
however, no such evidence for phase coexistence [19] could be detected. On the other hand,
the fourth-order cumulant [19, 20]

UL = 1 − 〈�4〉/[3〈�2〉2] (6)

is compatible with a continuous transition at ρ� = 0.8985 ± 0.0005 [8] (figure 4). While
the subsystem analysis [8] yielded reliable data for χ only in the range χ � 20, and fitting
these data to equation (5) indicated ρ� = 0.913, which would imply that χ is still finite at the
actual transition density ρ� ≈ 0.8985, more extensive data for χ due to Jaster [9] covering
the range up to χ ≈ 103 show that χ is indeed compatible with equation (5) for ρ� ≈ 0.899.
A finite-size scaling analysis of χ for various densities near ρ� yielded further support for a
KT-type divergence of χ at this density. Considered together with figure 4, we take this as
compelling evidence for a continuous KT-type transition from the fluid phase to another phase
at ρ� ≈ 0.899. However, in view of figures 1, 2 it is clear that any evidence that this other
phase is a hexatic phase is still lacking.

4. Monte Carlo input for renormalization group treatments of Kosterlitz–Thouless
transitions: the case of the planar rotor model

In this section, we make a detour in order to present a new method for exploring KT transitions.
The basic idea is to check the self-consistency of the RG flow equations that describe this
problem [21, 22] (figure 5) using the appropriate MC ‘input’. We test here the viability of
such an approach for the planar rotor model on the square lattice, whose Hamiltonian is (the
exchange energy is set to unity)

H = −
∑
〈i,j〉

cos(φi − φj ), 0 � φi < 2π. (7)

The theory [1] can be cast in the framework of a two-parameter renormalization flow for the
spin-wave stiffnessK(�) and the fugacity of vortices y(�), where � is related to the length scale
considered, r , as � = ln(r/a), where a is the lattice spacing. Absorbing a factor 1/kBT in K ,
it is predicted [21] that Kc = K(Tc) = 2/π is a universal constant. Therefore it is convenient
to write the flow equations in terms of the scaled variables x = 2 − πK and y ′ = 4πy. To
leading and next-to-leading order these equations are [22]

dx/d� = y ′2 − y ′2x, dy/d� = xy ′ + (5/4)y ′3. (8)

Figure 5 shows numerical solutions to these flow equations, starting from states of the model
on the smallest possible scale—that of the lattice spacing, for which there are no vortices, and
the corresponding ‘bare’ spin-wave stiffness K(0) and vortex fugacities y(0). These starting
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(a)

(b)

Figure 3. (a) First moment of the bond orientational order parameter 〈�〉L of the hard-disc fluid
as a function of density ρ for selected subbox sizes L = S/Mb (values ofMb are given in the key),
for an S×S system with periodic boundary conditions containingN = 16 384 particles. Note that
the shape of the simulation box is a parallelepiped compatible with the triangular lattice structure,
and the parameter Mb is equal to the number of subboxes along the edge of the total system. Lines
are guides to the eye. From Weber et al [8]. (b) A schematic diagram of the variation of 〈�〉∞
expected in the case of a first-order transition.

values were obtained from specially constrained MC simulations of the model that will be
explained below. One sees from figure 5 that the flow lines to the right of the separatrix all
flow to y ′ = 0, i.e. a state with no free vortices on large length scales: this is the low-temperature
phase. The flow lines to the left of the separatrix, however, bend over and flow to large y ′:
this means the disordered phase! But from the MC simulation we know which temperature
belongs to each starting state—in particular, we know also the temperature which falls on
the separatrix, which is Tc = 0.899. This estimate is in excellent agreement with careful
large-scale direct MC simulations of the model, which yielded [23–26] Tc = 0.895 ± 0.005.
The data also yielded an estimate for the constant b in the law ξ ∝ exp[bt−1/2] where now
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Figure 4. Order parameter cumulantsUL as a function of the total density ρ for various subsystem
sizes L = s/Mb . The lines connecting the data points are guides to the eye. The vertical dashed
line mark the range within which the cumulant intersection occurs (from Weber et al [8]).

Figure 5. Flows of x = 2 − πK and y′ = 4πy where K is the spin-wave stiffness and
y = exp(−µ/kBT ) the fugacity of vortices under the action of the RG, starting from a set of
initial conditions (circles) obtained from the simulation of the planar rotor model, equation (7).
The dotted lines (y′ = ±x) show the separatrix for the linearized flow equations valid for flows
near the fixed point x = 0, y = 0; the thick lines show the actual separatrix for the nonlinear
equations, equation (8). Note that these curves separate flows that terminate on the critical line
x < 0, y = 0 (ordered phase) from flows towards y → ∞ (disordered phase). Arrows show the
direction of the flow (from Sengupta et al [11]).
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Figure 6. A plot of − ln(nv) and − ln(p) versus the inverse temperature. The vortex concentration
nv (diamonds) is calculated in the unconstrained simulation of equation (7) for L × L lattices
(L = 100), and is subject to large errors at low T . The rejection ratio p in the constrained
simulation was calculated for L = 60 (+) and L = 100 (�), the errors being smaller than the size
of the symbols. The dotted line represents a fit to the latter data (near the transition temperature)
yielding 2µ = 6.55 ± 0.03 (from Sengupta et al [11]).

Figure 7. The inverse spin-wave stiffness K−1(T ) plotted versus T , for two types of simulation:
(i) the unconstrained L × L lattice with L = 100 (diamonds), (ii) the constrained (vortex-free)
system forL = 30 (×), 60 (+) and 100 (squares), respectively. The dotted straight line is the result
from harmonic spin-wave theory,K−1 = T , while the full curve is a fit to the formK−1 = T +aT 2

with a = 0.50 ± 0.01 (from Sengupta et al [11]).

t is t = T/Tc − 1, namely [11] b = 1.534 ± 0.002, in fair agreement with the direct
estimate [25] b = 1.585 ± 0.009 (note that the quoted error bars just indicate errors resulting
from least-squares fits that do not include the unknown systematic error due to a slightly
inaccurate determination of Tc in both cases, and hence one should not place too much reliance
on them). We emphasize, however, that for the quoted accuracy of Tc it is essential that
the next-to-leading order in equation (8) is included—had we taken the leading order only
(dotted-line separatrix in figure 5), a rather inaccurate estimate of Tc would result, namely
Tc = 0.925 [11].
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Figure 8. A typical move which attempts to change the coordination number (note the atoms
with fivefold and sevenfold coordination), implying the creation of a dislocation pair with opposite
Burgers vectors. Such moves are rejected in the simulation, and their rejection rate is measured
(from Sengupta et al [15]).

Figures 6, 7 now show the MC results on which this treatment is based. The treatment
implies a MC simulation of equation (7) where vortex formation is suppressed. This is done
as follows: the simulation is always started from a perfectly aligned ferromagnetic state (all
φi = 0), which has no vortices. Then a site is picked at random, and a move φi → φ′

i is
attempted, with 0 � φ′

i < 2π . First the standard Metropolis criterion for the acceptance of the
move is applied. If a move is being considered for acceptance, we check whether it would create
a vortex–antivortex pair. For this purpose, consider all four elementary plaquettes to which
the site i belongs. In each plaquette, label the sites anticlockwise as k = 1, 2, 3, 4 and define
/φk = φk+1−φk (withφ5 ≡ φ1). If

∑4
k=1 /φk = 0 for all four plaquettes, no vortex–antivortex

pair was created, and the move can indeed be accepted. However, if we find
∑4

k=1 /φk = ±2π
for any of the plaquettes, a vortex (or antivortex) would be created, and the move must be
rejected. The rejection rate p due to this no-vortex constraint is sampled and compared to
the vortex concentration nv in an unconstrained simulation (figure 6). The (inverse) stiffness
constant is simply given as K−1 = 4π ln〈M2〉/N , where M is the magnetization of the lattice
which has N = L × L sites (figure 7). While K−1 would show a singularity at Tc in the
unconstrained system (jump from π/2 to infinity), [K(0)]−1 is perfectly smooth near Tc and
not plagued by finite-size effects, since the constrained system is not critical there!

5. Melting of the crystal into the hexatic phase

The same idea as was pursued in the previous section for the planar rotor model and its
disordering via vortex–antivortex unbinding is now invoked for the study of the melting of the
triangular crystal lattice [15]. Again the trick is to apply a constraint that forbids the creation
of dislocation pairs (figure 8), measure the rejection rate due to this constraint and estimate
the dislocation core energy Ec from this rate:

p ≡ ppair = exp(−2Ec/kBT )/Z(K) (9)

where K is the dimensionless Young’s modulus, and Z(K) the ‘internal partition function’ of
a dislocation pair which is (using kBT ≡ 1 again) [27]

Z(K) = [2π
√

3/(K/8π − 1)]I0(K/8π) exp(K/8π) (10)

where I0 is a Bessel function. From p we hence obtain y = exp[−Ec(K)], which is one input
in the RG flow equation [2–7]. The elastic constants of the defect-free solid were measured by
a new subblock technique that is described elsewhere [28]. In this way, K could be obtained
with high precision over the whole density range of interest (0.88 � ρ � 1.1) [15]. Figure 9
now is the analogue of the flow diagram for the plane rotor model (figure 5). Note that the
universal fixed-point value is K = 16π here. Therefore figure 10 plots both the starting value



2332 K Binder et al

Figure 9. Schematic flows of the dimensionless Young’s modulus K and the dislocation fugacity
y according to the KTHNY recursion relations. The dashed lines show the separatrix whose
intersection with the line of initial states (the solid line connecting the full circles y(� = 0) and
K−1(� = 0) at different temperatures T or densities ρ, respectively) determines the transition point
(Tc or ρc , respectively) (from Sengupta et al [15]).

Figure 10. Bare Young’s modulus K(0)/16π (upper curve) and renormalized modulus KR/16π
(lower curve) plotted versus density. The dotted horizontal line K/16π = 1 highlights the value
at which the solid-to-hexatic transition is predicted (from Sengupta et al [15]).

K(0)/16π and the renormalized value KR/16π , as obtained from the recursion relations: in
this way one would obtain an estimate ρs = 0.916 and (figure 2) pc = 9.39. Of course,
the known recursion relations [2–7] contain only the leading terms, and experience with the
planar rotor model indicates that the neglect of the next-to-leading terms implies significant
errors. Therefore it is likely that the true result for KR/16π in figure 10 lies somewhere in
between the first-order result and the unrenormalized value (which would imply a transition
at ρ = 0.904, which also exceeds ρ� = 0.899, but is not a reasonable estimate for ρs because
the corresponding pressure would be too low (figure 2)). In view of these considerations, we
suggest ρs = 0.914 ± 0.002 as a preliminary estimate for the location of the phase boundary
between the solid and hexatic phases.
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6. Concluding remarks

In this paper, we have discussed the evidence for the applicability of the KTHNY theory to the
melting/crystallization transition of the hard-disc fluid. It has been shown that the currently
available simulation data are compatible with a continuous transition from the fluid to the
hexatic phase (with divergent bond orientational susceptibility) at ρ� ≈ 0.899, and with a
hexatic-to-crystal transition at ρs ≈ 0.914 ± 0.002. However, no simulations that reach full
thermal equilibrium in the density range 0.90 � ρ � 0.915 and show directly the existence of
the hexatic phase are available so far. Without such direct evidence, the possibility of a (very
weak) first-order transition from the fluid to the crystal cannot yet be firmly ruled out, although
so far clear signals of two-phase coexistence are also lacking.
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